Design Portfolio

Jonathan Heins

Academic Projects:

- Cyber Truck Digital Scale
- Aircraft Landing Gear
- Simulation of Rocket Combustion
- Simulation of Combined Cycle Jet Engine Combustion

Engineering Experimentation: CyberTruck Digital Scale

- Based off Tesla's CyberTruck
- Components:
 - Housing
 - Base
 - Load Cell
 - Arduino
 - LCD Display
- Programed
- 3D Printed

CyberScale Assembly Drawing & Render

CyberScale Assembled

Kinematic analysis & design: Four bar linkage

- Use analysis software to design 4 bar linkage
- Landing gear mechanism
- Based off P-51 mustang
- NACA airfoil

Combustion: Simulation of Rocket Engine

- Ansys Fluent Combustion
 Simulation
 - K-Epsilon Turbulence
 - RANS
 - DPM
- Developed python script to develop boundary conditions
- Limited to Ansys Student Mesh

Professional Work: Selected Examples

- Sullair (Siemens NX):
 - Custom Panel Sheet Metal
 - Exhaust Aluminized Tubing
 - Engine/Fuel System Hoses, fittings, tanks, mounts
 - Air End Castings, Hydraulics, Gear/Drive Train.
- Dwyer Instruments (Solidworks)
 - Gage Brass Body Forging
 - Gage Plastic Body Injection Molding
 - Pressure Switch Aluminum Diecast
- J&L Dimensional
 - 3D Scanning (GOM ATOS)
 - Coordinate Measuring Machine (CMM/PC-DMIS)
 - Romer Arm (PC-DMIS)

Sullair: Sheet Metal Panel

- Engineered Order required larger motor.
- Modified existing panel to bump out area around the motor.

Sullair: Fuel & Exhaust Design (Various Machines)

Dwyer Instruments: Housings

- Redrawn from hand drafted drawings & 2D CAD Drawings
- Forged Brass, injection molding, and diecast

J&L Dimensional

- 3D Scanning (ATOS)
- Coordinate Measuring Machine (PC-DMIS)
- Romer Arm
- Shop Tools
- Profilometer

Personal Projects

- Rocket-Fin Design
- 3D Printing
- CAD Design

Rocket-Fin

- Designed in conjunction with other hobbyists
- Subsonic Rocket
- Fin to be actuated with Servo motors

3D Printing

- Prusa MK3S Printer
- Calibrated
 - Extrusion Width
 - E-Steps
 - PID

3D Printing (cont.)

- Calibration is better than .01 micron
- Cube is 25mm x 25mm with .90mm walls

3D Modelling

• Currently working on a desk street light model to be 3D printed.

3D Scanning

